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A theoretical approach is suggested for the creation of composite materials based on disperse filler-filled 

polymers with a negative Poisson coefficient. Necessary and sufficient conditions are formulated for it. 

Production of polymer systems with a negative Poisson coefficient (y) is of particular theoretical and applied 

interest I1 1. 

In the experiments use was made of thermoplastic polyurethanes (TPU) synthesized on the basis of 4,4- 

diphenylmethanediisocyanate,  1,4-butanediol, and polyoxytetramethylenglycol with MM = 1500. Highly dispersed 

Fe, Mo, and W powders with a particle size of 0.3-1/~m were used as fillers. The specimens were prepared in the 

T - p  regime [2 ]. At a frequency of 0.4 MHz, the specific-heat increment (AC) and the rates of longitudinal 

(Vlong) and shear  Vsh deformations were determined following the method described in [31. 

Analysis of the temperature and concentration dependences of the specific heat of the systems has shown 

that as the content of the fillers increases, the portion of TPU macromolecules that go to the boundary  layer 

increases [2]. It should be noted that an important characteristic of the microstructure of the composites is 

formation of spatial coagulation structures in two cases of the content of the filler in the system (r (1) when it 

is lower than the critical content (~Ocr) and (2) equal to or exceeding the critical content. 

At ~o < ~Ocr, in the absence of segregation, particles of a highly dispersed filler are not at the nodes of the 

regular structure but occupy random positions in space. Initially, such a heterogeneous system can be simulated 

by a quasi-one-dimensional lattice with a random distance between particles of the filler [4 ]. In this case there is 

no cooperative motion of the particles, since the quasi-elastic component  of the interaction force does not appear 

at the phase interface. The particles of the filler that are in the polymer matrix experience individualized action 

under  the total action of friction forces or the medium's  resistance forces. The rate of their Brownian motion is 

determined by the temperature of the thermostat, the filler particle size, and the viscosity of the medium. An 

external force will make the particles move as colloid particles in a high-viscosity medium, irrespective of the motion 

of their neighbors [5 ]. 

As the content of the highly dispersed filler in the system increases, a larger and larger amount  of the 

polymer matrix is transformed to the state of the boundary layer, which "displaces" the polymer in space. At 

r -> r a three-component heterogeneous system degenerates to a two-component system of the fi l ler-boundary 

layer type [6 ]. In the case of ,p = r spatially ordered systems appear, since particle motion depends on the motion 

of their neighbors. Such a linear system is a one-dimensional crystal with the period [7, 8 ] 

I I6  Pf/PP+S~ l = d j - 1 , (1) 

where d is the filler particle diameter and tof and pp are the densities of the filler and polymer, respectively. 

In the absence of a spatial coagulation structure of a heterogeneous system, particles of the filler form a 

simple cubic lattice as a possible type of structure of a body with a minimum volume. Its nodes are imbedded in 

the polymer matrix, which is in the boundary- layer  stale. The period of this superlattice [4 ] is l and the internal 
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field is mater ia l ized  by a polymer  "binder" effecting interaction between part icles of the filler. The  po lymer  "binder"  

will be s imul ta ted  by elastic bonds  with constant /3  in the longitudinal  direction and  x in the t ransverse  direct ion.  

By ex t rapo la t ion  of the relat ion A C f / A C - *  O, where  ACf a n d  AC are  the values of the speci f ic-heat  

increment  for the filled sys tem and the initial polymer,  the critical contents  'Per of Fe, Mo, and  W in the sys tem 

are  found to be 43, 48, and  52 vol .%,  respectively. 

Calculat ions  by Eq. (I)  have shown that  l is commensurable  with the filler particle size, and  for the sys tem 

cons idered  it varies in the range of ( 0 . 4 6 - 0 . 8 0 ) d  [9 I. 

We cons ider  a metal - f i l led  po lymer  matr ix  based on a TPU.  Unlike a toms in the inter ior ,  surface metal  

a toms are  par t ly  hyd ra t ed  by the presence of hydroxyl  groups. Oxidat ion,  for example ,  of Fe, follows the scheme 

Fe ~ FeO --, Fe304 ~ 0. However,  in this case on the surface of a highly d ispersed  filler there  exists  1 - 2 ~  

coord ina t ion -unsa tu ra t ed  metal  atoms,  and it is these atoms that s tar t  to interact  with the TPU [2 ]. In o rde r  to 

obta in  an equation of s ta te  for this condensed  system,  the interact ion potential  of its a toms will be expressed  as a 

sum of two terms: ~o I (r) and ~'2(r) [ 10 ]. The first term ~ol (r) is assumed to be equal to the L e n n a r d - J o n e s  potent ial ,  

which charac ter izes  interatomic interact ion at T = 0. tn o rder  to de te rmine  the contr ibut ion of the elastic component  

of atomic interact ions to the specific internal  energy of the system,  the potential  interact ion energy will be summed 

over all possible parameters  of the atoms that are  paired with the atom considered,  and the result  will be mult ipl ied 

by the number  of atoms. The  second term ~02(r) of the interaction potential  is a function of T and is re la ted to the 

pressure  that  produces a flow of carr iers  emit ted by an atom to the other  a toms in the body.  

We cons ider  the flow of carr iers  that are  emit ted by a surface atom of a highly d ispersed  metal  filler as an 

active center  of interact ion with a TPU.  This  atom a exer ts  pressure  fa# on atom fl (TPU) ,  which is propor t ional  

(y) to the absorpt ion  cross-sect ion of the atom f l ( S a ) ,  irrespective of the type of car r ie r  and  the energy (Ea) ,  and 

decreases  as the d is tance  (r) from atom a increases,  i.e., fa~ = Y S a k E a / r m ,  where k and m are  positive cons tants  

and  m > 2 [10]. In this case, the component  of the interatomic potential  ~'2(r) is def ined by 

~o 2 (r) = - f f~ (r) dr  = - f ( y S a k E a / r  m) dr  = B E  

where  ~ S a k ( - r n  + I) = B; Ea  = E; rn 3 = - m  + 1, and  a are  positive constants .  

Then ,  the potent ia l  of in teract ion of this a tom with any o ther  atom in the polymer  matr ix  can be expressed  

as the sum 

E/ /12 ( )m3 ~o (r) = 4 D  - + B E  , (2) 

where  D and a are  constants  with d imensions  of energy and length, respectively.  The  length a is the equi l ibr ium 

dis tance  between the atoms,  and  at a = r we have ~o(a) = 0, when T = 0 (E = 0 at  T = 0). 

Proceeding from relat ion (2), we find the force acting between these atoms and holding them in a cer tain 

posit ion relat ive to each other:  

a BErn  a (3) 
f (r) = d~o (r) _ 24D 2 13 + 

dr  r a 

It should be noted that  while in Eq. (2) the exponent  6 at the term that  descr ibes  a t t rac t ion  is theore t ica l ly  

reasonable  and consis tent  with quan tum-mechanics  calculations,  the exponent  12 at the term that  descr ibes  collision 

is not just i f ied so str ict ly.  Therefore ,  in what  follows mt -> 12 and rn2 = 6 will be assumed in most genera l  form. 

The  presence of interact ion force (3) between atoms of the filler and  the polymer  matr ix  promotes  fur ther  

s t ruc tu r iza t ion  of the s y s t e m ,  restr ic t ing the mobil i ty of polymer  chains,  which changes the condi t ions  of the 

re laxat ion  processes.  This  is equivalent to the appea rance  of addi t ional  internal  pressure ,  es tabl i shes  a new quasi-  

equi l ibr ium s ta te  of the composite.  For  de te rmina t ion  of its value it is a ssumed  that  the a toms of the po lymer  matr ix  

a re  uni formly  d i s t r ibu ted ,  with dens i ty  hi, over concentric spherical  surfaces located at  equal d i s tances  from the 
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surface of the highly d ispersed  filler. On the surface zi a unit area  is ist, ,ated; then the resul tant  of the forces of 

interact ion of the atom with all the o ther  atoms in the polymer matr ix  is def ined as follows: 

I , : ,  : 2  _ ] (4) 
F =  ~. Fai= ~ ~ dFi2.~n , Z + BE ~ | - - ,  

t i 0 Z m'-lai Zm2-1ai Z -~ [ a i  j Zai 

ni 
where ~ ' =  (1 /n i )Z  Ea; zki -~ IZail = Iza - zil. 

a=l  
In view of the fact that at So --> ~Pcr a heterogeneous polymer  system is a set of macrolat t ices,  we choose one 

of them with period l in the composite and consider  the total force exer ted  on it. The  unknown total force is 

de t e rmined  as the sum of only those forces that a re  exer ted  on the volume considered by parts of the body 

s u r r o u n d i n g  it. Since these  forces act on the macrola t t ice  through its surface,  then,  apa r t  from interatomic 

interact ion forces (4), surface forces F s can act on particles of the body in the direct ion of the axis z. If a uniform 

stress  G acts in the direction of the normal to the surface, the average surface force per atom in the ex te rna l  layer  

is F 1 = G/no.  Accordingly,  the equil ibrium equation for an a rb i t r a ry  atom in the external  layer  can be expressed 

as 

d2z (5) 
F + F s = m dt 2 . 

In the equilibrium state d2z /d t  2 = 0, with al lowance for the fact that the force exer ted  on the ent i re  surface 

of the body by internal  s tresses is ~GdS,  per atom of the macrolat t ice,  we define G = (F/h2)no . Then ,  in accordance 

with (4) and  (5), the average surface force is found from equil ibrium for a toms in the externa l  layer  (za = zo = O) 

in the form 

G e s - - 
n o 

I am 1 1 a m2 ~ I 

i=1 i rnl-I h m2-I i=1 
+ B E - -  

a m3 ~ 1 

hm3- I i=1 
(6) 

where h = h i = Zi+l - zi is the dis tance between adjacent  layers  of the macrolat t ice parallel  to the surface on which 

the externa l  forces act. In view of the fact that the internal  s t resses  are  caused by molecular  forces that have an 

insignificant e f f~ l ive  range,  according to (6), calculation of G is reduced to considera t ion of h (as well as the rapid 

convergence of Z (1 / i  m l - l )  of the order  of magni tude of the interatomic distance.  Consequent ly ,  re lat ion (6) is 
.i= I 

s imilar  to (3) m ~ts form. Since with deformat ion of the system, a pressure  (p) equal in magni tude  and directed 

everywhere along the normal to the surface of the macrolat t ice acts on every unit volume, with al lowance for the 

fact that  p = Fsno = Fs /h  2 and h 3 = v| = vM/No ,  where vl is the volume per a tom and v is the specific volume of 

the compound,  Eq. (6) can be writ ten as 

I ( ~ )  ul (-~)  u21 t -~ /  u3 p = A1 _ + A2 ~ , (7) 

where v0 = a3; v = r3; A 1, A2, ul ,  u2, u3 are  positive constants  according to Eqs. (3) and (6). 

We consider  the case of deformat ion of the composite accompanied by changes in volume without  changes 

in shape.  

In the case of such uniform deformat ion of the composite,  with al lowance for the fact that on the surface 

of the microlatt ice Gzzni = P, i.e., p = Gzz, and the relative change in the specific volume v is slight,  in the Tay lo r  

series of (vo/v)  "i we can restrict  ourselves to terms of the second order  of smallness .  Then 

= 1 +  "" 1 - u i - - ;  A v = v - v  0 , i = t  2 , 3 ,  

and  at T = 0 relat.ion (7) becomes 
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a v  0 _ O (8)  
Y K 

where r - Al(Ul - u2)/(1 + u3Avo/v ) - A(Ul - u2). 

Using relation (3), we determine the maximum value of the force of interaction between atoms of the 

polymer and highly dispersed filler at the phase interface, with the extremum conditions d/ ( r ) /dr  ", 0 at T "- 0 (E 

0). Then ,  / 6) 
df  (r) = 24D - 26 + 7 . (9) 

dr 

With the distance between atoms of the polymer and highly dispersed filler f(r) = Fma x denoted by r = rmax, it is 

found that rma x = 1.245a = ba. Consequently,  in deformation of the system the maximum force of interaction between 

atoms 

(1126 ) lb-6 a 2 4 D  2 _ 1 (10)  
Frnax -- 24D 2 3 7 = - -  

rmax rmax b7a 

Since 2 / b  6 - 1 < 0 is the attraction force, the disruptive force is defined as 

Since in (6) the function F s decreases quite rapidly as i increases at constant  p and T, the density of 

macroscopic bodies is independent  of their size. Then ,  the relative change in the specific volume of the system is 

found in terms of the s t ruc tura l  characterist ics of the macrolatt ice with al lowance for its max imum elastic 

deformation as (AV/Vo)  = 3l 2. 1.245a/l  3 = 3 .1 .245a/ l .  In this case from relation (7) it is possible to determine 

the average range of in ternal  stresses that must be created by an external force in a heterogeneous polymer system 

in order that - 1  < ~ < 0: 

1.245a E < G < 3" 1.245a E .  (12) 
l l 

In the case of adiabatic deformations of the system, the ordinary (isothermal) quantities E and G should 

be replaced by their adiabatic values. It should be noted that in order to obtain the equation of elastic medium, we 

consider the interaction of its adjacent elements with masses M A and MB. Assuming that they form a l inear  chain 

of the type ABAB .... [I 1, 12 ], for longitudinal vibration, the solution of a secular equation of the type 

fI) A,I3 -- Mm2C3 A,B = 0 ,  

where ~A,B iS the potential of interaction between elements ,4 and B, has the form 

oJ(k) = ~ U A + M B +_ + M2B + 2MAM B c o s ( d k )  (14) 
M.4 M B 

Assuming that the lattices A and B vibrate, on the whole, relative to each other (cos (dk) = I) and  Wmax(k) = 

o9~ ng, we obtain 

( w l )  2 M A M  B 

= 2 ( M  a + M B) ' ( 1 5 )  
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where ~o~ ng is the longitudinal characteristic frequency. 

Since t ransverse vibrations are caused by flexibility of the chain and effected by deformat ion of valence 

angles,  the force that arises in this case is governed by Hooke 's  law. Then,  

co (k) = sm --~--, (16) 

where co(k) is the t ransverse characteristic frequency. 

Assuming that Wmax(k) -- co~, we find 

K ----- 
(co~)2 M (17) 

4 

The characteristic ~,-equency spectrum (co~ng co~) was calculated using the rates of longitudinal }'long and 

shear Vsh deformations by the relations 

I / 3  1 / 3  

w D ---- ~ Vlong ; co D = Vsh �9 

If it is assumed now that in a cylindrical body with cross-sectional area S under deformation,  motion occurs 

in the form of small elastic vibrations or waves, then their average power can be expressed in the form 

~~ = (F,o.g) (}'~o.g). (19) 

( /gsh)  = ( F s h )  (Vsh)  " 

Accordingly, the intensity is expressed as 

(Plonk) (Flong) @long) 
(/long) = S = S 

(20) 

(21) 

( / s h )  --  
(Psh) _ (Gh) (Vsh) (22) 

S S 

If it is assumed that the velocity of, for example,  ul trasound,  is the same in both the longitudinal (OY) 

and transverse (OX) directions (this can be achieved by carrying out experimental  studies),  at (/long) = (Ish) = (/), 
equations (21) and (22) can be expressed as 

(/) = (Flong) @long) (23) 
S 

Taking into consideration that 

(Fsh) (Vsh) (24) 
q )  - s 

flY0 (25) 
(Fl~ - 2 ' 

xx0 (26) 
( F s h ) -  2 '  
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where xo and YO are  d isp lacements  of adjacent  a toms from the equil ibrium position in the cor responding  direct ions.  

With the assumpt ion  that  the wavelength is much longer than the dis tance between adjacent  a toms,  in view 

of (15) and  (16) at M A "- M B ,  according to (25) and (26) Eqs. (23) and  (24) are expressed in the form: 

C0 = 

Iong~ 2 
, 

~o) (V,o.d Y0. 
(27) 

Hence,  f inally 

CO = O) Gh) x ~ ,  

2 (/) 
YO = ? Iong'~2 

t 
2 (0 

x0 = 2 

We int roduce the notat ion 

a 1 = [ Iong'~ 2 ' 

C0 
a2 = 2 

With al lowance for (31) and (32), relat ions (29) and (30) can be expressed  as 

2 al 
Yo - Cho.g) ' 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

We t ransform (33) a n d  (34)  to 

2 a2 
x 0 - (Vsh) �9 

2 
Yo 1 

al 2 
(Vlong) 

(34) 

(35) 

2 
x 0 | 

a2 2 
(Vsh) 

(36) 

5 4 7  



TABLE 1. Dependence  of St ruc tura l -Mechanica l  Parameters  on the Composi te  'Type 

S t ruc tura l -mechanica l  parameters  

of the sys tem 

~Ocr, vol. % 

cv~ ng" 10 -13, Hz 

co~. 10 -13 , Hz 

w D �9 10 -13, Hz 

o~ng,  K 

TPU + W 

0 ~ ,  K 

OD, K 

o 

a,A 

l,/~m 

/5, N/m 

x ,N/m 

48 

1.421 

1.237 

1.288 

109 

Composite  type 

95 

98 

2.08 

0.71 

1.638 

0.443 

TPU + Mo 

43 

1.565 

1.253 

t .329 

120 

96 

102 

1.84 

0.69 

1.986 

0.461 

TPU + Fe 

52 

1.468 

1.468 

1.239 

112 

90 

95 

2.06 

0.63 

1.747 

0.402 

- 0 . 3 9 7  - 0 . 3 6 5  - 0 . 2 3 6  

Then,  we obtain 

2 2 
x0 (37) Y0 + = 1. 

Consequent ly ,  in sys tems with y < 0, the deformat ion process of elastic vibrat ions propagates  in the form 

of an e x p a n d i n g  e l l ipso id  of revolut ion.  Th is  can be obse rved  by  the method  of ho log raph i c  in ter ference .  

Exper iments  carr ied out with nickel alloy single crystals  [13] have shown defini tely that  in the case of y < 0, the 

in terference processes actual ly  have the form of a set of ell ipsoids.  In this case, the average y is de te rmined  as 

-a2/b 2, where a and b are  semiaxes  of the ellipses in directions x and  y, respectively.  It follows from relat ion (37) 

that  y = --(Vsh/Vlong)'(w~)/w~) 2. In this case for the systems T P U + M o ,  T P U + F e ,  and  T P U + W ,  y is equal to 

- 0 . 4 2 ,  - 0 . 4 0 ,  and - 0 . 2 5 ,  respectively,  which agrees sat isfactori ly with calculat ions (Table  1). 

From relat ions (12) and (13) it is possible to de termine  the in ternal  s tresses in the case of a dynamic  load 

on the body  for the case of - 1  < y < O. With al lowance for ad iaba t ic  deformat ion  and the values of v~ong = 

[(2 + 2/.t)/p 1L:2 and Vsh = (,u/p) l/2 from [14 I, where 2 and p are  Lame 's  constants ,  using rela t ions (15 ) - ( I7 ) ,  we 

find the analyt ica l  express ion 

M 
\ / 

In this case,  the average  range  of in te rna l  s t resses  that  should  be c rea ted  by an ex te rna l  force f ield in a 

he terogeneous  sys tem in o rde r  that  it have - 1  < ), < 0 is found, according to (12), as 
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(,8 + 2x) < o < ~ + 2x) .  (38) 
lM IM 

The calculations (Table 1) show that for the TPU systems considered a negative Poisson coefficient is 
observed if they have internal stresses in the range of 0.97.106 Pa < cr < 7.11 �9 106 Pa. 

Thus, necessary and sufficient conditions are established under which structural modification of polymer 
systems is possible at ~p =, ~Pcr in order that - 1 < y < 0. 

N O T A T I O N  

y, Poisson coefficient; fl, x, elasticity constants; f(r), force of interaction; <p(r), interatomic potential; cr, 
internal stress. 
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